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Abstract To secure accuracy in the Soil and Water

Assessment Tool (SWAT) simulation for various hydrol-

ogy and water quality studies, calibration and validation

should be performed. When calibrating and validating the

SWAT model with measured data, the Nash–Sutcliffe

efficiency (NSE) is widely used, and is also used as a goal

function of auto-calibration in the current SWAT model

(SWAT ver. 2009). However, the NSE value has been

known to be influenced by high values within a given

dataset, at the cost of the accuracy in estimated lower flow

values. Furthermore, the NSE is unable to consider direct

runoff and baseflow separately. In this study, the existing

SWAT auto-calibration was modified with direct runoff

separation and flow clustering calibration, and current and

modified SWAT auto-calibration were applied to the

Soyanggang-dam watershed in South Korea. As a result,

the NSE values for total streamflow, high flow, and low

flow groups in direct runoff, and baseflow estimated

through modified SWAT auto-calibration were 0.84, 0.34,

0.09, and 0.90, respectively. The NSE values of current

SWAT auto-calibration were 0.83, 0.47, -0.14, and 0.90,

respectively. As shown in this study, the modified SWAT

auto-calibration shows better calibration results than cur-

rent SWAT auto-calibration. With these capabilities, the

SWAT-estimated flow matched the measured flow data

& Kyoung Jae Lim

kjlim@kangwon.ac.kr

Hyunwoo Kang

hwkang@vt.edu

Jongpil Moon

jpmoon2002@korea.kr

Yongchul Shin

ycshin@knu.ac.kr

Jichul Ryu

ryujichul84@gmail.com

Dong Hyuk Kum

kumdong@hotmail.com

Chunhwa Jang

cjang8@illinois.edu

Joongdae Choi

jdchoi@kangwon.ac.kr

Dong Soo Kong

dskong@kgu.ac.kr

1 Department of Biological Systems Engineering, Virginia

Tech, Seitz Hall, RM 214-F, Virginia Tech 155 Ag Quad

Lane, Blacksburg, VA 24061, USA

2 Department of Agricultural Engineering, National Academy

of Agricultural Science, 310 Nongsaengmyeong-ro, Wansan-

gu, Jeonju, South Korea

3 Department of Agricultural Civil Engineering, Kyungpook

National University, 80 Daehak-ro, Buk-gu, College Station,

Daegu, South Korea

4 Department of Water Environment Research, National

Institute of Environmental Research, 42 Hwangyeong-ro,

Seo-gu, Incheon, South Korea

5 Department of Regional Infrastructure Engineering,

Kangwon National University, Hyoja-2 Dong, Chuncheon,

South Korea

6 Department of Agricultural and Biological Engineering,

University of illinois at Urbana-Champaign, 310C

Agricultural Engineering Sciences Building, Urbana,

IL 61801, USA

7 Department of Life Science, Kyonggi University, 94-6 Yiui-

Dong, Yeongtong-gu, Suwon, South Korea

123

Paddy Water Environ

DOI 10.1007/s10333-015-0519-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s10333-015-0519-6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10333-015-0519-6&amp;domain=pdf


well for the entire flow regime. The modified SWAT auto-

calibration module developed in this study will provide a

very efficient tool for the accurate simulation of hydrology,

sediment transport, and water quality with no additional

input datasets.

Keywords Nash–Sutcliffe efficiency � Auto-calibration �
K-means clustering � Eckhardt digital filter

Introduction

Hydrologic models should be calibrated and validated

when they are applied to a real watershed. Accordingly,

several efficiency criteria have been used to evaluate the

behavior and performance of hydrologic models. Among

these efficiency criteria, the Nash and Sutcliffe efficiency

(NSE) (Nash and Sutcliffe 1970) is often used to assess the

predictive power of hydrological models. The NSE ranges

from -? to 1, where an efficiency of 1 corresponds to a

perfect match of simulated and observed data.

The NSE has been widely used in calibration and vali-

dation for hydrological components (George et al. 2004;

Lautenbach et al. 2009; Verbunt et al. 2005; Mitchell et al.

2001). The greater NSE value means that models reflect the

hydrological behaviors well enough to simulate natural

hydrological processes.

The Soil and Water Assessment Tool (SWAT) (Arnold

et al. 1998) is one of the models most typically used to

predict hydrology and water quality in watersheds. In many

SWAT application studies, the NSE has been frequently

used to evaluate model performance (Park et al. 2007;

Ndomba et al. 2008; Wu and Johnston 2007; Pisinaras et al.

2010). However, the NSE is known to be strongly influ-

enced by high values in the dataset (Legates and McCabe

1999; McCuen et al. 2006). Park et al. (2007) compared

SWAT-estimated weekly flow data with measured weekly

flow data based on the NSE. The NSE for the total

streamflow was 0.683, which indicated the simulated flow

data match measured data (Donigian 2000). However, after

clustering all flow data into flow group I and flow group II

using the K-means clustering algorithm (MacQueen 1967),

the NSE for flow group I (high flow) and flow group II (low

flow) were low, and even became negative, implying that

the average of measured data in flow group II (low flow)

should be used instead of model-simulated value (Fig. 1).

This result suggested that the use of NSE for flow evalu-

ation in watersheds in summer monsoon climate areas,

where the coefficient of river regime is usually greater due

to torrential rainfall during summer, was not sufficient.

Figure 1 indicates that if the NSE values for all flow groups

are evaluated with higher accuracy, accurate SWAT total

stream flow estimation could be obtained.

In the current SWAT model, the auto-calibration tool

(Van Griensven et al. 2002) is used to automatically esti-

mate the best input parameters for a given watershed. It has

been widely used because it can reduce the calibration

effort and save significant amounts of time (Van Griensven

et al. 2002; Eckhardt and Arnold 2001; Van Griensven and

Bauwens 2003). The SWAT auto-calibration uses the

Parameter Solution (ParaSol) algorithm (Van Griensven

and Meixner 2006). The goal function of ParaSol is the

greatest NSE. This indicates that there are higher chances

of a greater NSE value, although simulated data do not

match measured data reasonable for all flow regimes. Also,

the current SWAT auto-calibration has limitations in terms

of calibrating direct runoff and all flow regimes, which

means there could be errors in auto-calibration of SWAT

simulation for direct runoff and baseflow separately.

Therefore, calibration of high and low flow regimes sepa-

rately is highly recommended.

Thus, the objectives of this study were to (1) modify

SWAT auto-calibration with direct runoff separation and

K-means clustering algorithm (MacQueen 1967) to cali-

brate high/low flow and baseflow separately and (2) to

evaluate the modified SWAT auto-calibration module by

comparing calibration results to the current SWAT auto-

calibration module for a study watershed.

Fig. 1 Comparison of NSE values for high flow, low flow, and total

flow for showing the weakness of NSE value
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Previous research

Flow clustering calibration and direct runoff

separation

In many hydrology studies, the NSE has been often utilized

to evaluate model performance. However, the NSE has

been known that it is affected by one big data among

dataset. Thus, clustering method has been often utilized to

group the data into multiple groups. The K-means clus-

tering algorithm (MacQueen 1967) is one of the simplest

unsupervised learning algorithms to solve the clustering

problems. Among many clustering methods based on

minimizing a formal objective function, it is one of the

most widely used and studied methods (Lai and Huang

2010; Bandyopadhyay and Maulik 2002; Pandit et al.

2011).

The main idea of K-means clustering is to define cen-

troids using a given dataset. These centroids should be

placed in an elaborate way because different coordinates

cause different results (Zhou and Liu 2008). The first step

of the K-means clustering algorithm is to decide on the

centroid coordinate, and the second step is to decide on the

distance of each object from the centroids. The third step is

to group the objects based on the minimum distance. This

process can be repeated until the K centroids do not move

(Zhou and Liu 2008). Finally, this algorithm aims at min-

imizing an objective function (Eq. 1), in this case a squared

error function,

J ¼
Xk

i¼1

Xni

j¼1

jjxij � zijj2; ð1Þ

where xij is the jth point in the ith cluster, zi is the reference

point of the ith cluster, and ni is the number of points in that

cluster. The notation ||xij - zi|| stands for the distance

between xij and zi. Hence, the error measure J indicates the

overall spread of data points about their reference points.

To achieve a representative clustering, J should be as small

as possible. Figure 2 shows the main steps of the K-means

clustering algorithm.

Total stream flow is composed of direct runoff and

baseflow. Accordingly, SWAT-estimated total stream flow

should be evaluated after the concurrent calibration of

direct runoff and baseflow components. Many methods

(i.e., master groundwater depletion curve method, straight

line method, fixed base method, variable slope method,

etc.) have been used to separate direct runoff and baseflow

in watersheds (Chow et al. 1988; Rutledge 1993; Sloto and

Crouse 1996). Among these methods, the Web-GIS-based

Hydrograph Analysis Tool (WHAT; https://engineering.

purdue.edu/*what) (Lim et al. 2005, 2010) has been

widely used because of its easy-to-use web-based interface

and advanced separation modules, such as the local

Fig. 2 Main steps of the K-means clustering algorithm (MacQueen 1967)

Fig. 3 Location of the

Soyanggang-dam watershed
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minimum method, the BFLOW digital filter method, and

the Eckhardt filter method (Eckhardt 2005).

Eckhardt (2005) proposed the general form of a digital

filter considering filter parameter and BFImax (Eq. 2)

bt ¼ 1 � BFImaxð Þ � a� bt�1 þ 1 � að Þ � BFImax � Qt

1 � a� BFImax

;

ð2Þ

where bt is the filtered baseflow at time step t; bt-1 is the

filtered baseflow at the t - 1 time step; BFImax is the

maximum value of the long-term ratio of baseflow to total

streamflow; a is the filter parameter, and Qt is the total

streamflow at the t time step (m3/s). Eckhardt (2005) pro-

posed the use of BFImax values of 0.80 for perennial

streams with porous aquifers, 0.50 for ephemeral streams

with porous aquifers, and 0.25 for perennial streams with

hard rock aquifers. In this study, 0.80 is determined as the

BFImax value, and the Eckhardt digital filter with BFImax

value of 0.80 was used in SWAT auto-calibration to sep-

arate direct runoff and baseflow component from total

stream flow for each run during auto-calibration processes.

Materials and methods

Study area

Soyanggang-dam watershed is located in Gangwon pro-

vince in South Korea (Fig. 3). The basin area of

Soyanggang-dam is about 2703 km2, and it consists mainly

of forest (89.6 %), agricultural area (5.3 %), urban (0.7 %),

and bare ground (0.53 %). The average annual precipita-

tion is 1200 mm, and the coefficients of river regime at this

watershed are high because the Soyanggang-dam water-

shed is located in a typical monsoon climate area and

intense precipitation takes place during the summer. The

coefficient of river regime of the Han River in South Korea

is over 300, which is much greater than those in other

countries. The coefficient of river regime at Soyanggang-

dam watershed was above 2000 in 2005. Average flow

rates for the high flow regime at the study watershed was

303 m3/s, and flow rate for the low flow regime was

1.2 m3/s. Average elevation and slope are approximately

650.5 m and 40.6 %, respectively (Yoon et al. 2007).

Modification of auto-calibration using direct runoff

separation and flow clustering calibration modules

Parameter Solution (Parasol) (Van Griensven and Meixner

2006) is one of the calibration methods in the SWAT

auto-calibration module, and it is used to change the

parameters automatically. The ParaSol is based on the

shuffle complex (SCE-UA) algorithm, and it enables

sensitivity analysis, calibration, validation, and uncertainty

analysis of SWAT model automatically. However, current

SWAT auto-calibration/ParaSol only uses total streamflow

in flow auto-calibration procedures, although accuracies in

high and low direct runoff and baseflow estimation should

Fig. 4 Modification of SWAT

auto-calibration using direct

runoff separation and flow

clustering calibration modules
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be secured separately. In this study, ParaSol was modified

to calibrate SWAT model for high and low flow condi-

tions and baseflow in the watersheds using Eckhardt dig-

ital filter and K-means clustering algorithm. Through the

Eckhardt digital filter equation, direct runoff and baseflow

are separated, and then direct runoff is clustered using

K-means clustering algorithm to the low and high flow

groups.

ParaSol uses the sum of squares of the residuals (SSQ) as

an objective function and the NSE as a goal function to

determine the best parameters. The NSE value is calculated

as shown in Eq. 3, where Oi is observed flow, Pi is simulated

flow, and �O and �P are the average values of observed and

simulated flow, and the numerator of this equation is SSQ.

NSE ¼ 1 �

Pn

i¼1

ðOi � PiÞ2

Pn

i ¼ 1

ðOi � �OÞ2
: ð3Þ

SWAT auto-calibration using direct runoff separation

and flow clustering calibration modules was developed by

replacing the objective function in Parasol with this new

objective function. Figure 4 shows how the modified

SWAT auto-calibration was modified. The first step was to

divide total observed and simulated flow into direct runoff

and baseflow using the Eckhardt digital filter equation

(Eckhardt 2005). Second, direct runoff was separated into

low and high flow groups using K-means clustering algo-

rithm (MacQueen 1967). In this procedure, Eq. 1 is used to

find the position of centroids using a given dataset, and

then observed and simulated direct runoffs are divided into

two groups based on position of centroids. Third, the NSE

values and new objective function were calculated sepa-

rately for each flow groups: NSE_baseflow, NSE_di-

rect_High, and NSE_direct_Low. Finally, the objective

function was replaced by new objective function.

Table 1 Twenty-six parameters used in the SWAT auto-calibration module

Parameter Description Variation method Lower bound Upper bound

ALPHA_BF Baseflow alpha factor Replace by value 0 1

BIOMIX Biological mixing efficiency Replace by value 0 1

BLAI Maximum potential leaf area index Replace by value 0 1

CANMX Maximum canopy storage Replace by value 0 10

CH_K2 Effective hydraulic conductivity in main channel

alluvium

Replace by value 0 150

CH_N2 Mannings’ n value for the main channel Replace by value 0 1

CN2 SCS runoff curve number for moisture condition II Multiply by value (%) -25 25

EPCO Plant evaporation compensation factor 0 1

ESCO Soil evaporation compensation factor Replace by value 0 1

GW_DELAY Groundwater delay Add to value -10 10

GW_REVAP Groundwater ‘‘revap’’ coefficient Add to value -0.036 0.036

GWQMN Threshold depth of water in the shallow aquifer required

for return flow to occur

Add to value -1000 1000

REVAPMN Threshold depth of water in the shallow aquifer for

‘‘revap’’ to occur (mm)

Add to value -100 100

SFTMP Snow melt base temperature (�C) Replace by value 0 5

SLOPE Increase the lateral flow Multiply by value (%) -25 25

SLSUBBSN Average slope length Multiply by value (%) -25 25

SMFMN Minimum melt rate for snow (mm/�C/day) Replace by value 0 10

SMFMX Maximum melt rate for snow (mm/�C/day) Replace by value 0 10

SMTMP Snow melt base temperature (�C) Multiply by value (%) -25 25

SOL_AlB Moist soil albedo Multiply by value (%) -25 25

SOL_AWC Available water capacity of the soil layer Multiply by value (%) -25 25

SOL_K Saturated hydraulic conductivity (mm/h) Multiply by value (%) -25 25

SOL_Z Soil depth (%) Multiply by value (%) -25 25

SURLAG Surface runoff lag time Replace by value 0 10

TIMP Snow pack temperature lag factor Replace by value 0 1

TLAPS Temperature laps rate (�C/km) Replace by value 0 50
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Application of modified auto-calibration modules

The modified auto-calibration was applied to the study

watershed to evaluate the effects of the improved module in

flow estimation. In the SWAT auto-calibration, there are

twenty-six parameters to be calibrated for fitting simulated to

observed streamflow (Table 1). In the SWAT auto-calibra-

tion module, three variation methods are available to replace

the parameter automatically for each simulation. ‘‘Replace by

value’’ replaces the initial parameter by new value in selected

hydrological response unit (HRU); ‘‘Add to value’’ adds the

value to initial parameter in the selected HRU; and ‘‘Multiply

by value’’ multiplies the initial parameter by a value in the

selected HRU. During the auto-calibration procedure, all

parameters were substituted within the range between their

lower and upper bounds (Winchell et al. 2010). In this study,

these three variation methods were used in evaluating the

current and modified SWAT auto-calibration runs.

The current SWAT auto-calibration and the modified

SWAT auto-calibration modules using direct runoff sepa-

ration and flow clustering calibration modules were applied

to determine the best parameters for the study watershed

using the same datasets and compared based on the NSE

values for direct runoff and baseflow. The modified SWAT

auto-calibration can be used without any change/modifi-

cation in ArcSWAT interface, since the same file structures

are used in calibration processes. Various objective func-

tions could be utilized depending on flow status at the study

watershed. In this study, the coefficient of determination

(Eq. 4) and index of agreement d (Eq. 5) were used to

evaluate current and modified SWAT auto-calibration

modules.

R2 ¼

Pn

i¼1

Oi � �Oð Þ Pi � �Pð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Oi � �Oð Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

Pi � �Pð Þ2

s

0

BBBB@

1

CCCCA

2

ð4Þ

d ¼ 1 �

Pn

i¼1

Oi � Pið Þ2

Pn

i¼1

Pi � �Oj j þ Oi � �Oj jð Þ2
; ð5Þ

where Oi is observed flow, Pi is simulated flow, and �O and
�P are the average values of observed and simulated flow,

respectively.

Results and discussion

In a Soyanggang-dam watershed, there are eleven rainfall

observatories; Fig. 5 shows that average monthly precipi-

tation, runoff, and runoff ratio in study area; the average

precipitation in 2005 was 1216 mm. As shown in Fig. 5, a

significant amount of rainfall occurred during the summer;

57 % of precipitation occurred in June, July, and August.

This is very common in most of the watersheds in Korea,

under typical monsoon climate area.

The best parameters determined based on the current

and modified SWAT auto-calibration runs are listed in

Fig. 5 Monthly precipitation,

runoff, and runoff ratio in the

study area
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Table 2. With more than 10,000 runs, these two auto-cal-

ibration programs identified the best parameters within the

upper and low bounds of each parameter. The value in

Table 2 indicates that the goal function in the auto-cali-

bration module plays an important role in determining best

parameters. The value for the NRCS runoff curve number

for moisture condition II (CN2) is known as one of the

most sensitive SWAT parameters when simulating direct

runoff (Lenhart et al. 2002). The best CN2 value from

current SWAT auto-calibration was -22.67 % (‘‘Multiply

by value’’ variation method) and -4.89 % with the mod-

ified SWAT auto-calibration module. The CN2 estimated

with the modified SWAT auto-calibration module was

closer to the initial default parameter values, indicating

these CN2 values are acceptable compared with the CN2

values with the current SWAT auto-calibration modules.

Table 3 shows the NSE values for total streamflow, high

and low flow groups of direct runoff, and baseflow. The

NSE values for high and low flow groups of direct runoff

were 0.47 and -0.14 when using the current SWAT auto-

calibration module, and the NSE values for the two flow

groups using the modified SWAT auto-calibration module

were 0.34 and 0.09. The NSE values for baseflow com-

ponent were 0.90 for both auto-calibration modules.

According to the Nash and Sutcliffe (1970), if the NSE is

less than zero, the mean value of the observation would be

a better predictor than the model-estimated value. The NSE

value for total streamflow using the current SWAT auto-

calibration module was 0.83, and 0.84 when using the

modified SWAT auto-calibration module (Fig. 6). These

results indicate that the SWAT-simulated results with the

current SWAT auto-calibration module could result in

errors in simulated direct runoff, especially for the low flow

group (NSE value of -0.14) of direct runoff, although the

NSE values for total streamflow are acceptable ([0.83). If

the NSE values for high and low flow groups of direct

runoff and baseflow are all positive, the higher NSE values

for the total streamflow should be expected as shown in this

study. As shown in Fig. 7, modified SWAT auto-calibra-

tion gave better result (?NSE value), compared with that

(-NSE value) from current SWAT auto-calibration.

The coefficient of determination for low flow improved

from 0.35 (current SWAT auto-calibration) to 0.41 (mod-

ified SWAT auto-calibration). Also, the coefficient of

determination for Baseflow increased slightly as shown in

Table 4. When the index of agreement d was used, the

similar observation was found (Table 5).

Summary and conclusion

The SWAT auto-calibration module was modified using

direct runoff separation and flow clustering calibration. The

modified SWAT auto-calibration module was applied and

Table 2 Comparison of best parameters of current and modified

auto-calibration modules

Parameter Current auto-

calibration

Auto-calibration modified

by direct runoff separation

and flow clustering

calibration module

ALPHA_BF 0.91 0.98

BIOMIX 0.84 0.78

BLAI 0.26 0.48

CANMX 8.27 0.82

CH_K2 86.98 140.63

CH_N2 0.67 0.39

CN2 -22.67 (%) -4.89 (%)

EPCO 0.08 0.84

ESCO 0.94 0.69

GW_DELAY -5.12 ?5.74

GW_REVAP -0.03 0.00

GWQMN ?581.60 ?592.31

REVAPMN -89.08 -72.35

SFTMP 4.65 1.10

SLOPE -13.29 (%) -24.51 (%)

SLSUBBSN -19.57 (%) -14.88 (%)

SMFMN 7.78 0.69

SMFMX 6.71 3.19

SMTMP 14.69 (%) -7.16 (%)

SOL_AlB -15.81 (%) 20.38 (%)

SOL_AWC 5.98 (%) 13.31 (%)

SOL_K 0.15 (%) 23.59 (%)

SOL_Z 13.89 (%) -16.75 (%)

SURLAG 8.84 2.07

TIMP 0.17 0.37

TLAPS 18.50 44.84

Table 3 Comparison of the NSE values of current and modified auto-calibration modules

NSE-streamflow NSE-direct runoff NSE-baseflow

NSE-high flow NSE-low flow

Current auto-calibration 0.83 0.47 (?) -0.14 (-) 0.90 (?)

Auto-calibration modified by direct runoff

separation and flow clustering calibration module

0.84 0.34 (?) 0.09 (?) 0.90 (?)
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compared with the current auto-calibration module to

evaluate the performance of the modified module. High and

low flow groups of direct runoff and baseflow should be

calibrated with positive NSE values to secure higher

accuracies of SWAT estimation in all flow regimes.

Although the modified SWAT auto-calibration module did

not provides better NSE values than that of the current

SWAT auto-calibration, the calibration approaches used in

Fig. 6 Comparison of stream

flows of current and modified

auto-calibration

Fig. 7 Comparison of low flows of current and modified auto-calibration

Table 4 Comparison of the R2 values of current and modified auto-calibration modules

R2-streamflow R2-direct runoff R2-baseflow

R2-high flow R2-low flow

Current auto-calibration 0.84 0.81 0.35 0.92

Auto-calibration modified by direct runoff

separation and flow clustering calibration module

0.84 0.81 0.41 0.93
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this study are more hydrologically appropriate for the

watershed flow modeling, since high and low flow groups

of direct runoff and baseflow are considered separately in

the process.

In addition, the objective of this study was to develop

better auto-calibration module for all flow regimes

including high and low flow regimes, and all NSE values

with modified SWAT auto-calibration were above 0.

According to the study by Nash and Sutcliffe (1970), if the

NSE value is 0 or below, the mean value of the observation

would be a better predictor than the model-estimated value.

But, the NSE value for low flow group of direct runoff with

the current SWAT auto-calibration is below 0. It means the

modified SWAT auto-calibration could estimate flow rate

for all flow regimes. In addition, the modified SWAT auto-

calibration provides better coefficient of determination and

index of agreement d for low flow regime. This indicated

that the modified SWAT auto-calibration should be used in

evaluating hydrology and water quality during low flow

period. In Korea, 10-year average low flow data are used to

evaluate the total maximum daily load (TMDL), and the

results obtained in this study could be utilized to estimate

low flow rate at ungaged watershed after application of

modified SWAT auto-calibration to a watershed covering

ungaged watershed.

In the modified SWAT auto-calibration module, the

NSE is used as a goal function. However, there are many

metrics to evaluate calibration. Thus, other metrics such as

index of agreement d, root mean square error (RMSE),

modified NSE, modified d, and relative NSE and d could be

evaluated with modifications in the goal function, since

some of these metrics may be less influenced by higher

values in the flow dataset. In addition, the modified SWAT

auto-calibration module should be evaluated for water-

sheds with different precipitation patterns and amounts to

guarantee its efficiency in SWAT flow calibrations.

Accurate estimation of flow at various flow regimes is

very important in accurate modeling of soil erosion and

pollutant loads at stream and watersheds. Therefore, the

results of this study could give the preferable method for

calibrating hydrologic component and estimation of water

quality.
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